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Abstract 

iv 

The purpose of this paper is to investigate the functional dependence of pre- 
cession quantities such as lo, z, 6 upon the fundamental constants. The effect of 
small changes of the fundamental constants upon the precession quantities is 
derived, and numerical partial derivatives are given as power series in time from 
an arbitrary epoch. 
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Expressions for the Precession Quantities 
and Their Partial Derivatives 

1. Introduction 

Comparison of planetary observations with ephemeris 
positions, such as is necessary for orbit improvement or 
refinement of astronomical quantities, requires that cor- 
rections be applied to either the observed or ephemeris 
positions in order to refer both sets of coordinates to the 
same reference system. These corrections include such 
well-known effects as nutation, aberration, geocentric 
parallax, and the precession of the equinox. 

Although rather lengthy numerical expressions are usu- 
ally given for the parameters describing these various 
effects (the precession matrix is a good example), the 
expressions in fact depend upon a rather limited set of 
basic parameters, often called the fundamental astro- 
nomical constants. 

The purpose of this paper is to examine the basic 
parameters involved in the expressions for the mean 
obliquity of the ecliptic of date and for the elements of 
the matrix which is often used to account for the effects 
of precession. 

It will be shown that the mean obliquity of the ecliptic 
at 1900.0, the speed of the general precession in longi- 
tude at 1900.0, and the system of planetary masses con- 
stitute the set of basic parameters upon which the lengthy 
polynomials defining the mean obliquity of date and the 
elements of the precession matrix depend. 

Since the functional relations between the basic pa- 
rameters and the derived expressions for obliquity and 
precession are quite complex, numerical expressions are 
given which show the effects of small changes in the 
basic parameter set on the derived quantities. Thus, for 
example, one can determine the effect of a change in 
the mass of Venus on the value of the mean obliquity of 
date and on the precession matrix. 

If one has the heliocentric rectangular coordinates of 
a body referred to some fixed equator and equinox (e.g., 
1950.0) and wishes to find the coordinates referred to the 
mean equator and equinox of date, the transformation 
used is 

where 

1 

-sin a 

0 
cos a 

sin a 

cos O I  a 

COS a 0 
1 

- sin (Y 0 

JPL TECHNICAL REPORT 32- I044 1 



and where lo, 6 ,  and z are parameters describing preces- 
sion. Performing the multiplications in (1) we find 

Thus the elements of matrix A are the following: 

a,, = COS [o COS 6 cos z - sin s o  sin z 

= COS 5 0  COS 6 sin z + sin Co cos z 

aI3 = cos (0 sin 8 

a,, = -sin 5 0  cos 6 cos z - cos to sin z 

aZ2 = -sin cos 6 sin z +cos (0 cos z 

a?, = -sin (0 sin 0 

u3] = -sin 6 cos z 

= -sin 6 sin z 

a:$:< = cos 6 

These expressions are given in Ref. 1, p. 31. 

Usually the parameters 6, and z are written as poly- 
nomials in powers of time from some fundamental epoch. 
The remainder of this paper is a discussion of c0, 6 ,  and z 
and related quantities and their dependence upon funda- 
mental constants. Numerical partial derivatives of preces- 
sion quantities with respect to the fundamental constants 
are given. 

I I .  Symbols and Nomenclature 

lows (refer to Fig. 1 for the geometry): 
The principal symbols used herein are defined as fol- 

P o  = celestial pole at TI, 

Co = ecliptic pole at TI, 

yCl = equinox at To 

ylyllEll = ecliptic at TI, (fixed) 

y,)QAo = equator at T,, 

E ~ ,  = obliquity of ecliptic of To on equator 
at To = < En yo All 

P = celestial pole at T, 

C = ecliptic pole at T, 

y = equinox at T, 

yNIE = ecliptic at TI 

yQA = equator at T, 

E = < EyA = obliquity of ecliptic of T I  on equator 
of T, 

E ]  = < EnYlA = obliquity of equator of TI on ecliptic 
of T, 

yoyi --= * = luni-solar precession (including geo- 
desic) 

yIy = = planetary precession 

ynNi = IT1 = longitude of ascending node of eclip- 
tic at T, on ecliptic at To, measured 
from fixed equinox yll along fixed 
ecliptic of To 

yN, = A = longitude of ascending node of eclip- 
tic at T, on ecliptic at To, measured 
from mean equinox y of T, along 
mean ecliptic of T, 

~1 = < E,,N,E = angle between ecliptics of T,, and T I  

(,, = angle at PI ,  of TI,  between the great 
circles joining PI,  with y,, and PI, 
with P 

90° - PI, = right ascension of node of equator at 
T ,  on fixed equator at T o  measured 
from yll of TI, along equator of T,, 

90° + x = right ascension of node of equator at 
TI on fixed equator at TI,  measured 
from y of T, along equator of T, 

6 = < AQAo = angles between equators of T, and TI,  

111. Geometry of the Problem 

If C is the pole of the ecliptic and P the pole of the 
equator, then the equinox y is defined by the intersection 
of the planes of the equator and ecliptic. Since P and C 
are continuously in motion, the equinox also is in motion. 
The actual poles are described by the position of a mean 
pole plus a small oscillation (nutation) of the actual pole 
about the mean pole. 

The precessional motion of the mean equinox is due 
to the combined motions of the two poles that define it. 

2 JPl TECHNICAL REPORT 32- 1044 



I .  

Fig. 1. Geometric system associated with precession (from Ref. 2) 

The precessional motion due to the motion of the celes- 
tial pole is called luni-solar precession and is caused by 
the action of the sun and moon on the earths equatorial 
bulge. A small relativistic effect called the geodesic pre- 
cession is also included in the motion of the celestial pole. 
It is a direct slipping of the mean equinox of date along 
a fixed ecliptic, at the rate of 1‘.‘9 per century. The part 
caused by motion of the ecliptic pole is called planetary 
precession. Luni-solar precession slides the equinox along 
a fixed ecliptic while planetary precession changes the 
plane of the ecliptic. 

Owing to luni-solar attraction on the earths equatorial 
bulge, the mean celestial pole moves continuously to- 
ward the mean equinox of the moment with a speed 
given by P sin E cos E ,  where P is Newcomb‘s “Precession 

constant.” It is a function of the mechanical ellipticity of 
the earth and the elements of the orbits of the earth and 
moon. P is not strictly a constant, but has a small secular 
term of -0Y0036 per century due mainly to a secular 
change in the earths eccentricity. The speed of geodesic 
precession in the plane of the fixed ecliptic is -pg: hence 
the speed of the celestial pole toward the mean equinox 
of date is -pgsin E .  Thus the speed of the celestial pole 
toward the mean equinox of date is given by 

( P  cos E - p g )  sin E (2) 

Knowing that the celestial pole P at T ,  moves toward 
the equinox y of TI with speed ( P  cos E - pg) sin E ,  we 
can derive expressions for the rates of change of and E ] .  
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Let 

P’ = celestial pole at TI + AT 

C’ = ecliptic pole at TI + AT 

< PCoP‘ = d q  

PD = sinE1 d q  

PP‘ = ( P  cos E - pg) sin E dt 

P 

P’ 

Then 

c P = E  

COP = E ,  

COP’ = E ;  (obliquity of equator of T, + AT on 
ecliptic of To)  

< POCOP = * 
< PCoP’ = d q  

<C,PC = h 

PP’ = ( P  cos E - pg) sin E dt 

< CPP’ = 90° (pole P moves in circle about C) 

If one draws a small circle about Co through the point P ,  
intersecting the arc COP’ at D, then 

C,PD = 90° 

C,DP = 90° 

P ’  

and subsequently 

sin E ,  d q  ( P  cos E - pg) sin E dt - de, 
- - - 

sin (i- A) 
x 

sin 5 sin h 

< DPP’ = A 

d q  
dt sin E ,  - = ( P  cos E - pg) sin E cos A 

or 

and arc PD is of length &sine,.  Thus 

P’D = del 

(3) 

- (Pcos E - pg) sin E sin A (4) 
de1 -- 
dt 

In the triangle yy ,  N,,  differential spherical trigonom- 
etry yields 

de = cos h de1 + cos A dx, - sin h sin E ,  dq  

- sin A sin x1 &, 

de de 1 dxi d q  
dt dt dt dt - = Cos h - + cos A- - sinh sin - 

dni - sin A sin x1 - dt 
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N, of To  and an eastward motion of the equinox along the 
moving equator of T ,  which is known as planetary pre- 
cession. There are several measures of the general preces- 
sion in longitude. One definition is that the general 
precession in longitude is the difference between the great 
circle arcs joining the equinox of T ,  to the node N ,  and 
the equinox of To to N,-i.e., A - IT,. This definition is 
used by Andoyer, Tisserand, and Chauvenet, among 
others. 

Another definition is that of Newcomb. He defines the 
general precession in longitude as the motion of the mean 
equinox of T ,  along the moving ecliptic of T ,  and adopts 
as its measurement the orthogonal projection of this mo- 
tion onto the fixed ecliptic of To  (i.e., intersection of great 
circle joining y and Co with ecliptic of To).  

Y 

Using the expressions (3) and (4) in the above, one 
obtains 

d e  dr l  - = COS A- - dt dt  

which may be written as 

d n i  sin A sin x1 - dt 

de d 
- = cos ( A  - r , ) ~  (sin x1 cos IT,) - sin (A - IT,) dt 

d 7 1  dri X - (sin X ,  sin IT,) + 2 sin’ - cos A - dt 2 dt  

We also have the following relations: 

sinh sin(II, + *) - sinA 
sin X ,  sin E sin E ,  

- - - 

cos E = cos E 1  cos X I  

- sin 

sin h cos E = -sin A cos (n, 4- q )  

sin r1 cos (11, + *) 

+ cos A cos X ,  sin (n, + *) 
E + E ,  

cos ~ 

A - - I T 1 - *  - x 2 -tan - - tan 2 & - E ,  
cos - 2 

(5) 

Thus Andoyer’s general precession in longitude is yoT 
in the figure below, whereas Newcomb’s is yoRo.  

i 

The numerical difference between the two expressions 
is about 0’1001 T’. 

The Newcomb definition may be then defined as the 
longitude of the mean equinox of T ,  referred to the fixed 
mean equinox and ecliptic of To  (measured westward). 

(6) 

, 
One usually expresses Newcombs “precession con- 

stant” as 

P = Po + P,T, 

The expression for P ,  is given by deSitter and Brouwer 
(Ref. 3). 

(7) 
IV. General Precession in longitude 

The general precession in longitude is a result of the 
luni-solar precession westward along the fixed ecliptic 
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From the theory of secular perturbations in planetary 
theory one obtains the quantities (see Appendix A): 

sin x1 sin n, = sT, + s’T; + s”T; 

sin 7, cos = cT, + c’Tq + c”T; 

where T ,  is the time in tropical centuries from some basic 
epoch. 

Using the observationally determined values of the 
speed of general precession in longitude at To, the 
obliquity E” at To, the values P ,  and pg (also given by 
deSitter and Brouwer), the expressions sin x1 ;,!,E n, and 

the theoretical relations given by Eqs. (3)-(6), one can 
determine A - n,, A, ?, F ,  F , ,  etc. 

Set 

E = + aT, + a’T: + a”T; 

1 + b’T: + b“T: 

(9) Q = fT1 + f’T: + f”Ti 

X = gT, + g’T; + g”T; 

A - HI = hT, + h‘T: + h”Ti 

Using Eqs. (3)-(9) we get, similarly to Andoyer (Ref. 4), 

a = c, 

a’ = c’ - - 

f = Po COS En - pg, g = S CSC €0, h = f - gcosFn 

sh sf 1 1 1 
2 ’  2 2 2 2 b’ = - , f’ = -PI COS ell + - cP,  COS 2 ~ , ,  csc - - cpg cot 

sc 
h‘ f’ - g‘ COS El l  + - 2 g’ 1 (s’ + ch) csc en, 

(2YS + fg‘) btr - sin E ”  C 

3 ( 2 ~ ’ h  + sh’) -- - (h2  - S’ - c2) 
1 a” = c’l - - 
3 6 

U P ,  

3 

1 1 
2 

f” = 7 cos 2 E n  csc E l l  + U’COS 2~~ csc E” - b’ cos‘ el, csc 

(b’ - a’) cot E n  + - (a’ + g‘) 

+ c’h + ch‘ - sb’cot E , ]  - 6 

sin E , ~  S3 

2 12 h” = f” - g” cos Ell + - [(a’ + b’) g + ag’] - - cot 

Since h, p g ,  and E~ are given, we can find P,, from 
Po = ( h  + p g  + scot E o )  4 (sec E n )  and then all the other 
quantities. triangle YIRoY 

To find the relation between Newcomb‘s and Andoyer’s 
measures of general precession in longitude consider the 
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As mentioned earlier, Newcomb's general precession 
in longitude is yoRo and Andoyer's is A - rIl. Since 
ylyo = %, then ylRo = % - yoRo. Then in the preceding 
figure we have 

tan (% - yoRo) = cos tan A 

Using the expressions 

= + b'Ti + b" T: P = fT, + f'T: + g"T: 
A = gT1 + g'T: + g"T: A - I r ,  = hTl + h'T: + h"T: 

and supposing that 

we easily find 

a = h  \ 

I so 

sc 
yJ,, = A - - - T' 

2 '  

1 1 
2 h (s' - c') - - (SC' + CS') T:: 

V. Equatorial Precession Elements 

We now shall consider the effects of precession in the 
equatorial frame and the determination of the quantities 
bo, z ,  0, which are used in (1). 

From Fig. 1, the triangle A ~ , ~ ~ , Q  gives the differential 
relation 

d q  d(-Eo) 
- sin (90° + z + A) sin E l  - - cos (90" - &I) 7 d0 -- 

dt dt 

de 1 
- cos (90" + z + A) - dt 

and inserting sin 
we find 

( d q / d t )  from (3) and del/& from (4) 

= ( P c o s ~ - p g ) s i n ~ c o s z  (13) 
de 
dt 
- 

Similarly, from sin Adb = cos c sin Bda + sin cdB 
+ cos A sin bdC, 

Or, if one writes p = 90° - [,,, p = 90" + z we have 

= (PcosE - pg)sinEsinp (15) 
d0 
dt 
- 

( 16) d f  sine- = (PCOSE - pg)sinEcosp dt 

(14) 
&o sin0- = ( P c o s ~  - p g ) s i n ~ s i n z  dt 

In Aylyl,Q we also have the following relations 

- sin eo - sin - - sin 0 
sin% sin(p + A) sinp 

cos 6' = cos cos + sin sin E~ cos .\I 

-- 

sin P cos E,, = -sin p cos ( p  + A) 

+ cospcosOsin(p + A) 

@ l  
-tan - 2 2  sin 7 ( E ~  + E(,)  

sin - ( E ~  - E,,)  

* l  
2 2  

1 
2 

- - p f p + h  
1 
2 

2 tan 

tan - cos - ( E ~  + E , ~ )  

COS - ( E 1  - E o )  
2 tan 

JPL TECHNICAL REPORT 32-1044 7 



If one supposes that 

p. + p = 180’ + u’T: + U”T? = 180’ + z - 5 0  

p - p = rT1 + r’T: + r”T; = z + 5, 

e = w ~ l  + W’T: + W”T; 

from (15)-( 17) one finds, similarly to Andoyer, 

r = f COS E n  - g ,  w = f s in~ , ,  

r’ =  COS E ,  - g’, w’ = f’sin E ,  
uf = f‘g - fg’ 

3f ’ 

f’ sin2 E ,  

12 ( f  cos E o  - 3g) r‘’ = f” cos E ,  - g” + 
f sin E o  

24 
w” = f” sin E ( ,  + - (3g2 + 6fg COS E ,  - f’ COS‘ E o )  

The quantity u’’ will be found later. 

Thus, with Eqs. (10) and (11) one can find E ,  E , ,  q, A, 
h - J r ,  and Newcomb’s expression for the general pre- 
cession in longitude for time T ,  from fundamental epoch 
To. And from Eqs. (18) one can find z - Qo, z + 5 0 ,  and 6’ 
for epoch TI  referred to epoch T,. From (18) we also have 

z : = - r T , +  1 - ( r ’  1 + u ’ ) T : + - ( r ”  1 +u”)T: :  (19) 
2 2 2 

0 = w T ,  + w’TY + w”T; \ 
for equatorial precession parameters. 

VI. Precession from Arbitrary Epoch 

Frequently, one wants the precession quantities re- 
ferred to some abitrary epoch. In the preceding sections, 
we expressed the quantities from the epoch which is asso- 
ciated with the values of sinx, :f,: II,, E,,, etc. We now 

shall derive the quantities for any arbitrary epoch. Let 
To refer to the basic epoch to which the quantities 
sinal ;A; II~, E ,  refer (1900, say), T ,  the new fundamental 
epoch from which we want to express the precessional 
quantities and T the epoch of date from T I  in some unit 
of time (centuries, say). Let T’ be the elapsed time from 
basic epoch to date. 

Then T’ = T + T ,  is the elapsed time in centuries from 
the original basic epoch to the epoch of date. 

What we essentially wish to do is to derive the quan- 
tities a, a’, etc., for the arbitrary epoch T I .  In other words, 
we want sinx, E:,; n1 in terms of T from T I  rather than 
T’ from To.  

Let a prime denote the value of x,,  II,, E ,  for the 
epoch of date on the original basic epoch (1900). Let a 
bar denote the quantities for the epoch of date on the 
new arbitrary epoch (hereafter called the fundamental 
epoch), and let no bar or prime refer to the quantities 
for the fundamental epoch referred to the basic epoch. 

From Fig. 1 we have the following equator-ecliptic 
configurations for the basic epoch and the new funda- 
mental epoch. 

8 JPL TECHNICAL REPORT 32- 1044 



I .  

yb = equinox at time T,,  (basic) 

y o  = equinox at time T, from To (new fundamental 
epoch) 

y = equinox of date (T from TI or T’ = T + T, 
from To)  

x1 = angle between ecliptics of To and T ,  = <E,CEb 

= angle between ecliptics of T’ and To = <EBC 

F, = angle between ecliptics of T and T, = <EAEO Y 

where 

Eo = ecliptic at fundamental epoch 

Eb = ecliptic at basic (1900) epoch 

A, = equator at fundamental epoah 

Ab = equator at zero epoch 

Then 

n, = basic equinox to fundamental node on basic 
ecliptic = y b c  

n: = basic equinox to date node on basic ecliptic = ybB 

- 
rIl = fundamental equinox to date node on funda- Then for three dates (basic, fundamental, date) we have 

the following ecliptic configuration mental ecliptic = y,A 

E 
/ 

il = fundamental equinox to fundamental node on 
basic ecliptic = yoC 

Then 

BC = y b c  - ybB = n, - n: 

-? AC = y0C - y,A = A - III 

So the triangle formed by the three equinoxes is 

Y 

C 

where 

Eb = ecliptic at basic epoch (1900) 

E,  = ecliptic at fundamental epoch (arbitrary e.g. 1950) 
(T, from To)  

E = ecliptic of date (T from T,) 

A 

sin 7, sin (IT, - A) = sin x i  sin (II: - II,) 

sin7, cos (E, - A) = sin xi cos x1 cos ( I I ~  - II,) - cos x i  sin x ,  

Hence 
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which may be written 

sin?, sini?, = sin sin (IT: + A - TI,) - sin 7, sin A 

2 

I 
r1 + 2sinAsin~,sin2- - 2sinAsinr:- 

r1 
sin2 -cos 2 (TI: - TI,) 

- 
sinSi, cos 11, = sin r: cos (IT: + A - IT,) - sin 7, cos (n, + A - n,) 

r: 
2 + 2 cos A sin r, sin‘ - - 2 cos A sin T: 

r1 sin2 - cos (IT: - n,) 2 

Now 

T ,  = time in centuries of new fundamental epoch from basic epoch 

T = time in centuries of date epoch from fundamental epoch 

T’ = time in centuries of date from basic epoch = T I  + T 

so 

T = T‘ - T I  

Now we know that 

sim, sin n, = ST, + s’T: + s”T; 

sin r1 cos IT, = cT, + c’T: + c”T; 

Fundamental epoch from 
basic epoch 

sinrisinn: = s ( T ,  + T )  + S’ ( T ,  + T)’ + S” (T ,  + T ) 3  

sin r: cos IT: = c ( T ,  + T )  + C’ (T ,  + T)* + C” ( T ,  + T)” 

Date from 
basic epoch 

and we desire to find 

sin?, sin E, = ZT + ?Ti + Y’T3 

sin 5,  cos E, = ET + c‘T’ + Z’T3 
Date from fundamental epoch 

We also knaw 

A - rIl = hT, + h’Tf + h”T; 

Inserting the above quantities into (21) we get 

t sinFl sinE, = ST + 7 T 2  + S”T3 

sin 7, cos n = ET + E’T’ + E” T3 

10 JPL TECHNICAL REPORT 32-1044 



where 

~' 
with 

- s = s + slT, + s,T: 

Z = c + clT, + c,T: 

5' = s' + s:T, 

c" = c' + d T ,  

3." = s" 

c" = c" - 

s1 = 2s' + ch 

S 
s2 =: 3s'' + 2c'h + ch' - - (h' - s2 - c') 2 

S 
S: 3s" + dh + z ( s 2  + c') 

Thus if we have sin rl ;:,; ri, for time T from basic 
(1900) epoch and if we have h and h' for A - nl for T ,  
from basic epoch, we can compute sin% ;,:; n, for time 
T from arbitrary epoch T ,  via (23). 

- 

Now that we have 

sin%, sinii, = ZT + S'T' + ?'T3 

sin Ti, cos 5, = cT + ZT2 + ?T3 

and knowing that 

F,, = Po + P,T, 

F, = P,  

(23b) 
- 
E, ,  = E (T , )  = E,, + aT, + a'T: + a"T; 

- - -  
one can compute E, F,, q, A, A - E, by a process similar 
to that in the first part of the paper. 

If 

For Newcombs general precession in longitude, expressed 
in the form (YT + Z'T' + PT', we find 

- a = Z=  c + clTl + c,T: 

f = f + f,T, + fiTT 
- 
- 
g = g + giTi + g,T: 

= h + h,T, + h,T: 

Also Z = a + alTl  + a2T: 
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1 - -  
where F0, P,, Po are given in ( ab ) ;  where sl, s2, si, cl, c2, C: are given in (23); where a, f ,  g, h, a’, b‘, etc., are given in 
(10) and (ll), and where 

f l  = -UP,  sin + P ,  COS 

a2Po COS - d P o  sin - U P ,  sin Eo f - _ -  

61 = s, csc El3 - ag cot Eo 

g, = S*CSCEo - aglcotE0 + g 

h, = fl - g,  cos^^ + %sineO 

1 
2 2 -  

1 
b: = ~ ( s f i  + s i f )  

f’ - - Po csc Eo [c, COS 2 E 0  - az (cot 
1 + sin  EO)] 

‘ - 2  
1 
2 
1 
2 

+ - aP, csc (COS 2~~ - sin2 E ~ )  

f - pg csc E o  (aZ csc Eo - C I  cos E o )  

gi  = (si + ch1 + c,h) csc - a cot E O  csc E O  (s‘ + ch) 
1 1 + -slc + -cls 2 2 

h’ - t 
- f l  + ag’sin - g: COS 

Thus, the planetary precession from arbitrary epoch T, to date T is 

- 
X = (g + glT, + gzT:) T + (g’ + giT,) T2  + g”T3 

and similarly for the luni-solar precession. 

For the equatorial precessional elements we have 

- 
T = r + rlTl + r2T: 
- w = w + wlTl  + w,T: 

T’ = f + d T ,  

G‘ = w‘ + d,T, 
u’ = u’ + uiT, 
T” = #’ 
t(;’’ = w” 

U‘‘ = U‘’ 

- 

- 
- 
- 
- 
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where r, w, r’, wr,  u’, rrr,  wr* are given by (18) and 

r ,  = f l  cos E,, - af sin I - gl I *  

1 
2 . r2 = f 2  cos - afl sin - gf - - a2f cos - a’f sin 

tc, = f l  sin + af cos 

1 
2 w2 = f. sin E~ + af, cos + a’f cos eo - -a2fsin 

u: = + [ g ( f :  - 45’) + rgl  - fg‘,] 

r: = ~ ‘ C O S E ~  - af‘sinEo - g: 

wf - * - f: sin E o  - uy cos Eo 

1 
urr = 3 u: I 

Finally, we get 

Note that 

1 
2 

w’ = - Wl 1 
2 f =-r1 

wz = w: rz = 7: 

The quantity u“ (which was not computed earlier) may be 
determined by the fact that since p + p = 180° + u’T: 
+ ur’T; gives p + p at TI  from zero epoch and ,E + 7 = 
180° + (u’ + u:T,) T2  + u”T3 gives jI + T at T from T ,  
epoch, then if T = - T I  we have p + p for zero from T ,  
epoch = p + p(T1) .  

Thus we get 

p + p (TI  from 0) = 180° + u’T:’ + urfT; 
ji + p(0 from T, )  = 180° + u’T: + (u: - u”) Tt 

or 

1 1 1 
t: - - ( r  + rlTl + rnT;)T + z [ ( f  - uf) + (7: - u:)T, ]  T 2 + - ( r r r  - urr)TS “ - 2  2 

1 1 1 
z = - ( r  + rlTl + r2T;) T + - [(f + u’) + (r: + u:) T , ]  T‘+ 2 (rf’ + u”) T3 2 2 

6’ = (W + wlTl  + w,T:) T + (w’ + w:T,) T Z  + w”T3 I 

where all the quantities are previously given. an idea of how the derived quantities vary with small 
changes in the fundamental constants. The partial deriva- 
tives are given in Appendix B. We now have explicit expressions for precession quan- 

tities and their relationship to the fundamental quantities 
Po or h, and the system of planetary masses. Hence, we 
can compute partial derivatives of these derived quantities 
with respect to the fundamental constants and thus get 

The reader may consult Refs. 5-8 for a more detailed 
discussion of the problems presented by the necessity of 
determining the precession constants. 
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Appendix A 

Expressions for sin n, . 
In Ref. 8 (p. 377), Newcomb lists values of a quantity 

K L for the planets Mercury through Neptune at the 
epochs 1600, 1850, 2100. These expressions are the com- 
ponents from each planet of the time derivative of x1 :A; II, 
per Julian century. Clemence (Ref. 9) lists d/dt (xl 1;: n,) 
for Pluto at the same epochs. 

From the tabular values of d/dt (xl n,) for epochs 

in time for d/dt (xl n,) and by integration one gets 
x1 ;,;IT, for time T centuries from 1850. However, since 
the perturbations K ",: L have been found by multiplying 
a quantity involving the elements by the mass of the dis- 
turbing planet, the quantities d/dt (xt IJ,) will change 
whenever the system of planetary masses is changed. 

I 1600,1850,2100 one can form a second-degree polynomial 

If cy-,, a,,, cy, are the quantities d/dt(x,sinn,) or - 
d/dt ( x ,  cos n,) for the epochs 1600, 1850, 2100, then the 
value of T T ,  sin 11, or x1 cos 1-1, is found from 

where the unit of time is the Julian Century. If the ex- 
pressions are desired for tropical centuries, substitute 
0.9999 78641 TI for T ,  in (28). I 

If mi are the reciprocal masses of the planets which one 
uses in integrations, then from Newcomb's data and sys- 
tem of masses (Ref. 8, p. 336), one has 

For 1600 (a ,) 

For 1850 (aII) 

For 2100 (a,) 

3,093,500 + 0.617 I 1047.88 ( -2.804 ) I 3501.6 (-0.574) 
i- 

m.~ufar,r  -1.310 

+-A( 22756 +0002 . ) + - (  19,540 -0.004 )+-( 360,000 -0.0004 ) 
muranus -0.008 mv,,,tu,,, -0.004 ml,lato -0.0012 

m.waTs (-0.735) mJ,,,it,, -16.170 

d 
(XI :.:,: T I )  = 

3,093,500 +0.634 1047.88 -2.511 3501.6 - 0.542 
+ Mars (-0.719) (- 16.047) + SatuTn (- 1.318) 

22,756 + 0.002 19,540 (-0.004) I 3:6O00 (-0.0004) 
+ (-0.008) -t Neptune -0.004 - 0.0012 

d 7,500,000 + 0.254 410,000 + 8.032 
:.:,: I T , )  = Mercury (-0.208) + Venus (-28.185) 

3,093,500 f0.651 1047.88 -2.224 3501.6 -0.510 
+ Mars (-0.703) + Jupiter (- 15.919) + Saturn (- 1.325) 

22,756 + 0.003 19,540 - 0.004 360,000 - 0.0004 
+ 

(-0.008) + Neptune (-0.004) + Pluto (-0.0012) 

where the unit of time is the Julian Century and the quantities are in seconds of arc. 
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For an example: JPL, at the time of this writing uses Clemence’s masses (except for earth-moon) given in Ref. 9. 

Mercury 6,000,000 

Venus 408,000 

Earth-Moon 329,390 

Mars 3,093,500 

Jupiter 1047.355 

Saturn 3501.6 

Uranus 22,869.0 

Neptune 19,314 

Pluto 360,000 

Hence using (29), (30), and (31) or taking the quantities from Clemence (Ref. 9, p. 175) 

1600 1850 
(per Julian 
century) 2100 

+ 4’13674 f5’13395 + 6’.’3035 
d 
- ( X ,  sin n,) dt 

d 
( 7 1  cos Hl) - 47.1143 - 46.8390 - 46.5518 

and so and 

x1 sin IT, = +5.33942’, + 0’119361Tf - 0’1000216Ti 

Tl  COS 11, = -46.8380T1 - 0’1056252’; + 0’.’000317T.; 

1 
2 cff - - (s’ + e‘) c for cff 

in the formulae of the preceding sections. where T ,  is in centuries (tropical) from 1850. 

In the present work, all expansions are made in terms 
II,, which 

On the other hand, if the planetary theory furnishes 
of sin X ,  “,: ITl rather than tan 7, ;A; II, or 7 ,  

may sometimes be furnished by planetary theory. 
x1 ::: 111, then one should substitute 

- 1 (s2 + e*) s for s” 
- 

6 Employing the relations 

1 
2 tan x = sinx + -sin:’ x and 

1 
6 

1 
6 

cf’ - - (s2 + c2)  c for cff x = sin x + - sin” x 

it can easily be shown that if the planetary theory furnishes 
tan x1 :.:,; H, then one should substitute 

in the preceding formulae. However, since s2 + 
X 

+ 5 
rad, and s and c are less than 50”, we have 

( S ~  + s i n  ( . ( ,9  < 3” X which may be ignored since the 
1 
2 sff - -(s2 + c2) s for s” 

quantities d / d t  (XI ::: n,) are only given to 4 or 5 figures 
anyway. 
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So from Newcomb's values of K L we get sin r1 n1 
as time series from 1850 as shown above. However, usually 
we update the zero epoch from 1850 to 1900. This involves 
(22) and (23). But in (23) we used 

A - II1 = h,Tl + h'T: + h"T: TI from 1850 

Thus, using Clemence's rl;~;III for 1850, and taking 
at 1900 E ,  = 23'27'08'.'26, h = 5025.64, we get, from (23): . 

sin X ,  sin n, = 4.96257' + 0.1940T' - 0.000227'" 

sin X ,  cos II, = -46.845T + 0.0544T" + 0.0032T7 
and if we have 

as sin XI y; n, terms of tropical centuries from 1900. 
3 
4 Note h = h, + h' + - h" d 

-(A - n,) = h at 1900 dt 

as the speed of general precession in longitude, then in 
formula (23) we set h' = 0, T ,  = 1/2 and h = general pre- 
cession in longitude at 1900 to get sin r1 :i! HI for 1900. 
Or, one could calculate h' at 1900 by (lo), estimate 
h,,,, = h,,,, - 1/2 h:,,, and then recalculate h:,,,,. By 
using (23) one then gets x1 fb: n1 for 1900. 

Thus 1900 now becomes our zero epoch with s, s', s", 
C, c', e'' given above, and E n  = 23O27'08'.'26, h = 5025'.'64. 

With P I ,  pg at 1900, we can compute all the quantities 
for time T derived in the paper for arbitrary epoch TI 
tropical (or Julian) centuries from 1900. This is given in 
Appendix B. 
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I) 

Appendix B 

Numerical Values of Precession Quantities 

Using the JPL masses (Appendix A) and the following 
observed quantities for 1900 (per tropical century): 

h = 5025’.‘64 

PI = -010036 

pg = 1’.’921 

and the values of x1 S,:; U1 for 1850, we get for TI tropical 
centuries after 1900 and T tropical centuries (date) after 
T, the following values: 

pn@ 1900, zero epoch 1900 

PI (3 1900, new fundamental epoch TI 

/T1 + T from 1900 
\T from T, pg(31900, date 

sin X I  sin n, = (s + slTl + s,T:) T 

+ (s’ + &TI) TZ + s”T 

sin r1 cos nl = (c + clTl + c,T:) T 

+ (c’ + c:T,) T’ + c’’T:: 

F,, (at T,) = eo (1900) + UT, + a’Ti + u”T; 

T(at T) = eo (1900) + UT, + u’T: + UT; + ((I + ulTl 

+ u2T:) T 

+ (a’ + u:TJ T Z  + UT“ 

(T on TI) En + (b’ + b:T,) TZ + b“Tj 

= E O  + UT, + u’T: + u”T: 

+ (b’ + &TI) T’ + b”T3 

9 luni-solar-geodesic = (f + f ,Tl + f2T:) T 

+ (f’ + f{TJ T’ + f“T‘  

Planetary = (g + glTl + g2T:) T + (g’ + g:T,)T’ 
+ g“T3 

Andoyer’s general precession in longitude = A - rrl 

= (h + h,T, + hJ:)  T + (h’ + h:T,) T’ + h”T3 

It should be noted that de Sitter’s (Ref. 3) and 
Clemence’s (Ref. 9) quantities for pl, ,I, and p correspond 
to the coefficients of T (first power only) in %, K, X - El 
in our development. Also, several of Clemence’s second- 
order terms in TI are in error. (They use T as time since 
1900 whereas we call it TI.) 

In the following tables, the first line contains the co- 
efficients of the powers of T and TI, using the JPL masses 
and basic constants given above. Subsequent lines give 
the partial derivatives with respect to general precession 
in longitude at 1900, obliquity at 1900, and the system of 
planetary masses. Units for the quantities are seconds 
of arc, and for the partial derivatives the corrections for 
Ah, A&,, are assumed to be in seconds of arc while those 
of the masses are pure numbers ~ r n / m .  The unit of time 
is the tropical century. TI is the time from 1900.0 to the 
fundamental epoch (e.g., 1950.0), and T is the time from 
the fundamental epoch to date. 

For the partial derivatives we have listed only the terms 
which affect the quantities involved to lo-’ sec of arc. 
It was assumed that the reasonable sizes of corrections are: 

Ah 1 ” 

A&,, 12 

8, (Mercury) 10-2 

8, (Venus) 2 x 10-3 

13, (Mars) 10-2 

e4 (Jupiter) 5 x 10-4 
e5 (Saturn) 10-3 

O6 (Uranus) 3 x 10-3 

O i  (Neptune) 2 x 10-2 

e, (Pluto) 10-1 

1 / t r  
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Table B-1. x = sin T~ sin TI, 

I X I (4'!9624 - 0'1753471 0'10002671~lT (0!'1940 + 0~000771112 - O'.!OO022T3 

(-0.00011 - 
0 

07311 
7'123 
0'1629 

- 2'!65 
-0755 

0 
0 

I 0 

0.0002371 
0 
0 

-0'144 
-07011 
-0'127 

0 
0 
0 
0 

OTIZ)T + I 0 
0 0 
0 0 
0 0'112 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0T,1T2 
0 
0 
0 
0 
0 
0 
0 
0 
0 

OT' 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 8-2. x = sin ?rl cos IT, 

1-46'1845 - 07012211 + 0.005471'Il -I- (0.0544 - 0.00387117' + 0.003213 

0 
0 

-0'1266 
-28.53 
-07723 

16.00 
-1731 

0 
0 
0 

0 
0 
0 

-0712 
0 

o'(11 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table B-3. x = F,, ( E ~ ,  = 23' 27'08'.'26) 

E, - 46'!84571 - 0.0061TI' 0!'00187? 

0 0 0 0 
1 0 0 0 
0 -07266 0 0 
o -28'153 0 0 
0 -0'!723 0 0 
0 -16'100 0 0 
0 - 1 '.I31 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

Table 8-4. E = TI, + x (see Table 3) 

1-46'1845 - O'tOl227, + 0~0054T121T + 1-070061 f 01'0054T1172 $. 070018T3 

0 0 0 0 0 0 
0 0 0 0 0 0 

-07266 0 0 0 0 0 
-28'153 -0712 0 0 0 0 
-07723 0 0 0 0 0 
- 16700 -O','l 1 0 0 0 0 

-1'131 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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Table B-5- Fz = .Fc + x (see Table 3) 

ax/a h 
a,/a Eo 

a x / a  e, 
a x / a  e, 
a x / a  e3 
ax/ae, 
ax/a es 
ax/a e. 
ax/a e, 
a x / a  es 

(0.0606 - 0.0091 911)l' - 0.00771 r' 

0 0.99974 0 0 
-0 .m15  0 0 0 0 0 

0'1718 0 0 0 0 0 
1'166 0'130 0 - O'I66 0 0 
1'1449 0 0 -0!'017 0 0 

-6'111 0'117 0 -0'136 0 0 
-1127 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

-0.0002 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 8-6. x = 

Table 8-7. x = 1 

-0.00028 
- 0.00014' 
-01782 

18116 
11579 

-6166 
- 1139 

-01010 
-01001 

0 

-0.00057 
0 

-01011 
-1110 

01026 
-0169 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-0.00057 
0 

-0'1014 
- 1'143 
-01036 
-0183 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 8-8. General p.recession in longitude 

XI = A - I I 1  

xz = P (Newcom b) 
(Andoyer) 

15025164 + 2 '12228~~  + 010004or1Z1r + (111 114  + o'!ooo40rl)rZ + o.oooi4r' 
0.00003 5025.64 2.2228 0.00040 1.1 120 0.00032 

l.m 0.00062 0 0.00031 0 0 
0 0 0 0 0 0 
0 0'1013 0 0 0 0 
0 1'131 0 0166 0 0 
0 01032 0 01016 0 0 
0 0180 0 0140 0 0 

Note: (a) Partials of XI and xz ore identical; (b) Partials not listed are zero. 
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Table B-9. x = go 

(2304'1253 + i!'3972r1 + 0!'000125~1')r + (0'!3023 - 0'!00021 i r N  + o'!oi80r3 

0.45872 0.00038 0 0 0 0 
-0.00486 0 0 0 0 0 
-0'!062 0 0 0 0 0 
- 1 "44 0'!83 0 0'11 8 0 0 
-0'1125 0'1020 0 0 0 0 

0'153 0'150 0 0'111 0 0 
0.1 1 0 0 0 0 0 

ax/a h 
ax/a Eo 

ax/a e, 
ax/a e2 
a x / x e ,  
ax/a er 
ax/a e5 

ax/a e, 

0.39788 -0.00017 0 0 0 0 
0.02234 0 0 0 0 0 
0'1206 0 0 0 0 0 
6'163 -0'152 0 0-0'124 0 0 
O'l577 -0'!013 0 0 0 0 

-2'143 -0'!29 0 -0'114 0 0 
-0.51 0 0 0 0 0 

X 

ax/a h 
ax/a Eo 

ax/a e, 
ax/a e? 
ax/a e3 
ax/a e, 
ax/a es 

Table 6-10. x = z 

(2304'1253 + 1 ' 1 3 9 7 2 ~ ~  + o'toooi 25~1217 + (1 '10949 + o'100046r1)r2 + o'loi 8 3 P  

0.45872 0.00038 0 0.00028 0 0 
-0.00486 0 0 0 0 0 
-0'1062 0 0 0 0 0 
- 1'!44 0'183 0 0'165 0 0 
-0'1125 0'1020 0 0'1016 0 0 

0'153 0'150 0 0'139 0 0 
0'111 0 0 0 0 0 
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Appendix C 

Relations Between Forward and Backward Precession Elements 

Draw the equator-ecliptic configurations for times However, if we consider E to be the fixed ecliptic 
(Epoch TI + T), then E, is the moving ecliptic at time - T 
from Epoch T, + T. 

I ’  
T, and To + T. i 

i E 

But by definition 

y Q =  90’ - [o(T1+ T ,  -2”) 

A 

Ao and 

y,Q = 90’ + . z ( T ~ +  T ,  - T )  

<AQA, = e ( T ~ ,  T )  = -0  (T ,  + T ,  -TI  
/ Y  

Hence we have If E,, ,  A, are ecliptic and equator for time T,, and E, 
A are ecliptic and equator for time T, + T, then 

5‘o(Ti,T) = -z(Ti + T7 - T )  
YO71 = * T ,  

y Q = 9 0 ”  +z(T1,T)  z(Ti,T) = -So(Ti + T,  - T )  

yoQ = 90’ - L(T1, T )  ~ ( T , , T ) =  - e ( T , + T , - q  

where 

( Tl, T) = > times T from epoch T ,  
These relations are sometimes useful in reducing the 

volume of tabular data required for manual data reduction. 
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